Back Propagation Algorithm: The Best Algorithm Among the Multi-layer Perceptron Algorithm
نویسندگان
چکیده
A multilayer perceptron is a feed forward artificial neural network model that maps sets of input data onto a set of appropriate output. It is a modification of the standard linear perceptron in that it uses three or more layers of neurons (nodes) with nonlinear activation functions and is more powerful than the perceptron in that it can distinguish data that is not linearly separable, or separable by a hyper plane. MLP networks are general-purpose, flexible, nonlinear models consisting of a number of units organized into multiple layers. The complexity of the MLP network can be changed by varying the number of layers and the number of units in each layer. Given enough hidden units and enough data, it has been shown that MLPs can approximate virtually any function to any desired accuracy. This study presents the performance comparison between multi-layer perceptron (back propagation, delta rule and perceptron). Perceptron is a steepest descent type algorithm that normally has slow convergence rate and the search for the global minimum often becomes trapped at poor local minima. The current study investigates the performance of three algorithms to train MLP networks. It was found that the back propagation algorithm are much better than others algorithms.
منابع مشابه
Classification of ECG signals using Hermite functions and MLP neural networks
Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. In the first module the stationary wavelet transform (SWF) is used for noise reduction of ...
متن کاملModeling heat transfer of non-Newtonian nanofluids using hybrid ANN-Metaheuristic optimization algorithm
An optimal artificial neural network (ANN) has been developed to predict the Nusselt number of non-Newtonian nanofluids. The resulting ANN is a multi-layer perceptron with two hidden layers consisting of six and nine neurons, respectively. The tangent sigmoid transfer function is the best for both hidden layers and the linear transfer function is the best transfer function for the output layer....
متن کاملPrediction of daily evaporation using hybrid support vector regression-firefly optimization algorithm and multilayer perceptron
Prediction of daily evaporation is a valuable and determinant tool in sustainable agriculture and hydrological issues, especially in the design and management of water resources systems. Therefore, in this study, the ability of artificial intelligence models of multi-layer perceptron (MLP), support vector regression (SVR), and the hybrid model of support vector regression-firefly optimization a...
متن کاملPrediction-Based Portfolio Optimization Model for Iran’s Oil Dependent Stocks Using Data Mining Methods
This study applied a prediction-based portfolio optimization model to explore the results of portfolio predicament in the Tehran Stock Exchange. To this aim, first, the data mining approach was used to predict the petroleum products and chemical industry using clustering stock market data. Then, some effective factors, such as crude oil price, exchange rate, global interest rate, gold price, an...
متن کاملModeling of measurement error in refractive index determination of fuel cell using neural network and genetic algorithm
Abstract: In this paper, a method for determination of refractive index in membrane of fuel cell on basis of three-longitudinal-mode laser heterodyne interferometer is presented. The optical path difference between the target and reference paths is fixed and phase shift is then calculated in terms of refractive index shift. The measurement accuracy of this system is limited by nonlinearity erro...
متن کامل